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Outlines

§ Additive Synthesis

§ Subtractive Synthesis
– Analog synthesizers
– Singing voice synthesis

§ Nonlinear Synthesis
– Ring modulation / Frequency modulation 
– Wave-shaping

§ Physical Modeling

§ Sample-based Synthesis
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Additive Synthesis

§ Synthesize sounds by adding multiple sine oscillators
– Also called Fourier synthesis
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Telharmonium

§ The first additive synthesizer 
using electro-magnetic “tone 
wheels”  (Cahill, 1897)

§ Transmitted through telephone 
lines 
– Subscription only
– The business failed



Theremin

§ A sinusoidal tone generator

§ Two antennas are remotely 
controlled to adjust pitch and 
volume

Theremin	(	by	Léon	Theremin,	1928)
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Theremin (Clara Rockmore)
https://www.youtube.com/watch?v=pSzTPGlNa5U



Hammond Organ
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§ Drawbars
– Control the levels of individual 

tonewheels



Sound Examples

§ Web Audio Demo
– http://femurdesign.com/theremin/
– http://www.venlabsla.com/x/additive/additive.html

§ Examples (instruments)
– Kurzweil K150

• https://soundcloud.com/rosst/sets/kurzweil-k150-fs-additive
– Kawai K5, K5000
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Subtractive Synthesis

§ Synthesize sounds by filtering wide-band oscillators
– Source-Filter model
– Examples

• Analog Synthesizers: oscillators + resonant lowpass filters
• Voice Synthesizers: glottal pulse train + formant filters
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Moog Synthesizers
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https://www.youtube.com/watch?v=usl_TvIFtG0



Moog Synthesizers
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Oscillators

§ Classic waveforms

§ Modulation
– Pulse width modulation
– Hard-sync
– More rich harmonics
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Amp Envelop Generator

§ Amplitude envelope generation
– ADSR curve: attack, decay, sustain and release
– Each state has a pair of time and target level

14

Note	On Note	Off

Attack Decay Sustain

Release

Amplitude
(dB)



Examples

§ Web Audio Demos
– http://www.google.com/doodles/robert-moogs-78th-birthday
– http://webaudiodemos.appspot.com/midi-synth/index.html
– http://aikelab.net/websynth/
– http://nicroto.github.io/viktor/

§ Example Sounds
– SuperSaw
– Leads
– Pad
– MoogBass
– 8-Bit sounds: https://www.youtube.com/watch?v=tf0-Rrm9dI0
– TR-808: https://www.youtube.com/watch?v=YeZZk2czG1c
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Modulation Synthesis

§ Modulation is originally from communication theory
– Carrier: channel signal,  e.g., radio or TV channel 
– Modulator: information signal, e.g., voice, video 

§ Decreasing the frequency of carrier to hearing range can be used to 
synthesize sound 

§ Types of modulation synthesis
– Amplitude modulation (or ring modulation)
– Frequency modulation

§ Modulation is non-linear processing
– Generate new sinusoidal components
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Ring Modulation / Amplitude Modulation

§ Change the amplitude of one source with another source
– Slow change: tremolo
– Fast change: generate a new tone
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Ring Modulation / Amplitude Modulation

§ Frequency domain 
– Expressed in terms of its sideband frequencies
– The sum and difference of the two frequencies are obtained according to 

trigonometric identity
– If the modulator is a non-sinusoidal tone,  a mirrored-spectrum with regard to the 

carrier frequency is obtained
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fc+fmfcfc-fm

am (t) = Am sin(2π fmt))

carrier
sidebandsideband



Examples

§ Tone generation
– SawtoothOsc x SineOsc
– https://www.youtube.com/watch?v=yw7_WQmrzuk

§ Ring modulation is often used as an audio effect
– http://webaudio.prototyping.bbc.co.uk/ring-modulator/
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Frequency Modulation

§ Change the frequency of one source with another source
– Slow change: vibrato
– Fast change: generate a new (and rich) tone
– Invented by John Chowning in 1973  à Yamaha DX7
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Frequency Modulation

§ Frequency Domain
– Expressed in terms of its sideband frequencies
– Their amplitudes are determined by the Bessel function
– The sidebands below 0 Hz or above the Nyquist frequency are folded 
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Bessel Function
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Bessel Function
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The Effect of Modulation Index
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Yamaha DX7 (1983)



“Algorithms” in DX7
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http://www.audiocentralmagazine.com/yamaha-dx-7-riparliamo-di-fm-e-non-solo-seconda-parte/yamaha-dx7-algorithms/



Examples

§ Web Audio Demo
– http://www.taktech.org/takm/WebFMSynth/

§ Sound Examples
– Bell
– Wood 
– Brass
– Electric Piano
– Vibraphone
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Non-linear Synthesis (wave-shaping)

§ Generate a rich sound spectrum from a sinusoid using non-linear transfer 
functions (also called “distortion synthesis”)

§ Examples of transfer function: y = f(x)
– y = 1.5x’ – 0.5x’3
– y = x’/(1+|x’|)
– y = sin(x’)
– Chebyshev polynomial: Tk+1(x) =  2xTk(x)-Tk-1(x)
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Physical Modeling

§ Modeling Newton’s laws of motion (i.e. 𝐹 = 𝑚𝑎) on musical instruments
– Every instrument have a different model

§ The ideal string

– Wave equation: 𝐹 = 𝑚𝑎	à 𝐾 '()
'*(

= 𝜀 '
()

'*(
(𝐾: tension, 𝜀: linear mass density)

– General solution: 𝑦 𝑡, 𝑥 = 𝑦0(𝑡 −
*
3
) + 𝑦5(𝑡 +

*
3
)

àLeft-going traveling wave and right-going traveling wave
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Physical Modeling

§ Waveguide Model
– With boundary condition (fixed ends)

§ The Karplus-Strong model
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Physical Modeling

§ The Extended Karplus -Strong model

31https://ccrma.stanford.edu/~jos/pasp/Extended_Karplus_Strong_Algorithm.html



Sample-based Synthesis

32

Synthogy Ivory	II	PianoFoley	(filmmaking) Ringtones

§ The majority of digital sound and music synthesis today is accomplished 
via the playback of stored waveforms
– Media production: sound effects, narration, prompts
– Digital devices: ringtone, sound alert
– Musical Instruments

• Native Instrument Kontakt5: 43+ GB (1000+ instruments)  
• Synthogy Ivory II Piano: 77GB+ (Steinway D Grand, ….)



Why Don’t We Just Use Samples? 

§ Advantages
– Reproduce realistic sounds (needless to say)
– Less use of CPU

§ Limitations
– Not flexible: repeat the same sound again, not expressive 
– Can require a great deal of storage
– Need high-quality recording
– Limited to real-world sounds

§ Better ways
– Modify samples based on existing sound processing techniques

• Much richer spectrum of sounds
– Trade-off: CPU, memory and programmability
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Sample-based Synthesis
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Wavetable Synthesis

§ Playback samples stored in tables
– Multi-sampling: choose different sample tables depending on input conditions such 

pitch and loudness
• Velocity switching

§ Reducing sample tables in musical synthesizers
– Sample looping: reduce the size of tables
– Pitch shifting by re-sampling: avoid sampling every single pitch 
– Filtering: avoid sampling every single loudness

• e.g. low-pass filtering for soft input
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Sample Looping

§ Find a periodic segment and repeat it seamlessly during 
playback
– Particularly for instruments with forced oscillation (e.g. 

woodwind)
– Usually taken from the sustained part of a pitched musical note

§ It is not easy to find an exactly clean loop
– The amplitude envelopes often decays or modulated: 

• e.g. piano, guitar, violin 
– Period in sample is not integer à non-integer-size sample table?
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Attack Loop													

Playback	using	looping



Sample Looping

§ Solutions
– Decaying amplitude: normalize the amplitude

• Compute the envelope and multiply it inverse 
• Then, multiply the envelope back later

– Non-integer period in sample
• Use multiple periods for the loop such that the total period is close to integers

* e.g. Period = 100.2 samples à 5*Period = 501 samples 
– Amplitude modulation

• Crossfade between the end of loop and the beginning of loop meet

§ Automatic loop search
– Pitch detection and zero-crossing detection: c.f. samplers
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Concatenative Synthesis

§ Splicing sample segments based on input information
– Typically done in speech synthesis: unit selection

§ Sample size depends on applications
– ARS: limited expression and context-dependent 

• word or phrase level
– TTS: unlimited expression and context-independent

• phone or di-phone (phone-to-phone transition) level
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Summary
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Memory
(Storage)

Programmability
(by # of parameters)

Reproducibility of 
natural sounds

Interpretability
of parameters

Computation
power

Additive ** ***** **** **** ****

Subtractive * *** ** *** **

Non-linear * *** ** ** **

Physical model *** ** **** ***** *** ~ *****

Sample-based ***** * ***** N/A * ~ ***


